DBaaS

От 3,98 руб./час

№1 в рейтинге DBaaS

SLA 99,95%, 152-ФЗ, PCI DSS

Корпоративные мессенджеры

от 250 руб/мес

Защищенная платформа

коммуникаций

Корпоративные мессенджеры

От 200 руб/мес

Передовое

решение

IBP

по запросу

Универсальная CPM/EPM

self-service платформа

ВКС

от 250 руб/мес

Платформа корпоративных

коммуникаций

HRM

от 8500 руб.

HCM-платформа

для автоматизации HR

IaaS

По запросу

По вашим правилам

Dedicated, SaaS/PaaS

  • Корпоративные мессенджеры

    от 250 руб/мес

    Защищенная платформа

    коммуникаций

  • Корпоративные мессенджеры

    От 200 руб/мес

    Передовое

    решение

  • IBP

    по запросу

    Универсальная CPM/EPM

    self-service платформа

  • ВКС

    от 250 руб/мес

    Платформа корпоративных

    коммуникаций

  • HRM

    от 8500 руб.

    HCM-платформа

    для автоматизации HR

  • IaaS

    По запросу

    По вашим правилам

    Dedicated, SaaS/PaaS

  • IaaS

    от 249,95 руб.

    Для любых задач

    Оплата pay-as-you-go

  • Kubernetes

    От 5,95 руб / час

    №1 в рейтинге провайдеров

    SLA 99,98%, 152-ФЗ

  • IaaS

    По

    Облако VMware/Брест

    ФЗ-152, SLA 99,99%

IaaS

от 249,95 руб.

Для любых задач

Оплата pay-as-you-go

Kubernetes

От 5,95 руб / час

№1 в рейтинге провайдеров

SLA 99,98%, 152-ФЗ

IaaS

По

Облако VMware/Брест

ФЗ-152, SLA 99,99%

Low-code

от 667 руб.

Цифровая трансформация

с ELMA365

BPM

от 12 000 руб/год

Цифровые процессы

с комфортом для людей

IaaS

от 490руб./мес

VMware / ПО РФ

SLA 99,95% Pay-as-you-go

IP-телефония

от 0 руб.

Продуманная связь

для вашего бизнеса

Причины бума на рынке GPU Cloud

Маркет

В последние годы рынок GPU Cloud переживает невероятный взлет, привлекая все больше внимания и инвестиций. Этот бум вызван рядом факторов, начиная от растущего спроса на вычислительные мощности для обработки данных и искусственного интеллекта до технологических прорывов в области графических процессоров и облачных вычислений. В данной статье мы рассмотрим основные причины этого феномена и его влияние на современную технологическую экосистему.

Развитие LLM

LLM, или Large Language Model (крупные языковые модели), представляют собой класс мощных алгоритмов искусственного интеллекта, способных анализировать, генерировать и понимать естественный язык. Эти модели, основанные на глубоком обучении, способны обрабатывать огромные объемы текстовых данных, извлекать полезную информацию из текстов и выполнять различные языковые задачи, такие как перевод, суммаризация, генерация текста и многое другое.

Для бизнеса LLM представляют огромную ценность по ряду причин. Во-первых, они обеспечивают возможность автоматизации и улучшения процессов обработки текстовых данных, что позволяет компаниям существенно повысить эффективность работы с большим объемом информации. Например, LLM могут быть использованы для автоматической обработки и анализа отзывов клиентов, новостных статей, отчетов и других текстовых данных, что помогает быстрее выявлять тренды, понимать потребности клиентов и принимать более обоснованные решения.

В последние годы рынок GPU Cloud переживает невероятный взлет, привлекая все больше внимания и инвестиций

Во-вторых, LLM способны генерировать тексты высокого качества. Это полезно при создании контента, рекламы, автоматического ответа на вопросы клиентов и других целей. Например, они могут создавать персонализированные рекомендации для пользователей, автоматически генерировать описания товаров или услуг, а также помогать в разработке контента для маркетинговых кампаний.

Кроме того, LLM используются для улучшения пользовательских интерфейсов, разработки виртуальных ассистентов и чат-ботов, анализа настроений и мнений в социальных медиа и многое другое. Их способность работать с естественным языком делает их мощным инструментом для улучшения взаимодействия компаний с клиентами и оптимизации бизнес-процессов.

Таким образом, LLM представляют собой неотъемлемый элемент современного бизнеса, обеспечивая компаниям инновационные возможности для улучшения производительности, создания ценности для клиентов и достижения конкурентных преимуществ.

Андрей Никитин

Директор по продуктам T1 Облако

В чем причины бума GPU Cloud?

Динамика роста облачных сервисов с GPU — закономерное явление: развитие технологий искусственного интеллекта и машинного обучения, которые сегодня находят свое практическое применение в различных сферах бизнеса и отраслях, повышает спрос на производительные вычислительные ресурсы, включая графические ускорители. Это глобальный тренд, по данным аналитиков, ежегодно на базе разработок NVIDIA — ведущего в мире производителя GPU, — выпускается около 60 млн видеокарт, основными потребителями которых являются крупнейшие международные ИТ-компании.

При этом Россия входит топ-10 стран-лидеров в мире по объему вычислительных мощностей и внедрению проектов с использованием ИИ, что делает роль облачных технологий в процессах применения GPU достаточно высокой. Сегодня ведущие российские сервис-провайдеры выступают «технологическим плечом» и фундаментом, предоставляя компаниям возможность получить доступ к новейшим мировым разработкам на базе облачных GPU-сервисов без необходимости самостоятельно приобретать видеокарты, инвестировать в дорогостоящее оборудование и его поддержку.

Сложность закупки GPU карт из-за санкций в России

Второй важной причиной бума на рынке GPU Cloud является сложность закупки графических процессоров (GPU) из-за санкций, наложенных на определенные страны, включая Россию. Санкции могут ограничивать доступ к передовым технологиям и оборудованию, включая высокопроизводительные GPU, что делает их приобретение и импорт непредсказуемыми и затруднительными.

В условиях ограничений и нестабильности на рынке традиционного оборудования компании и исследовательские организации все чаще обращаются к облачным сервисам с использованием GPU в качестве альтернативного решения. GPU Cloud предоставляет гибкое и доступное решение для использования вычислительных мощностей, не требующее инвестиций в собственное оборудование и минимизирующее риск возможных проблем с закупкой или импортом GPU.

Таким образом, санкции, осложняющие закупку графических процессоров на традиционном рынке, стимулируют спрос на облачные сервисы с использованием GPU, что способствует буму на рынке GPU Cloud.

Масса open source ML-библиотек, доступных каждому

Одной из основных причин бума GPU Cloud является наличие множества открытых ML-библиотек, доступных для каждого. Эти библиотеки позволяют разработчикам и исследователям использовать мощные графические процессоры для ускорения обучения и развертывания моделей машинного обучения.

С ростом популярности машинного обучения и искусственного интеллекта потребность в мощных вычислительных ресурсах стала актуальной. Графические процессоры (GPU) оказались идеальным решением для этих задач благодаря своей высокой производительности и параллельной архитектуре.

Open source ML-библиотеки, такие как TensorFlow, PyTorch, MXNet и Caffe2, сделали доступ к GPU-вычислениям доступным для широкого круга разработчиков. Это позволило создавать и обучать сложные модели машинного обучения, которые ранее были невозможны из-за высоких требований к ресурсам.

Кроме того, доступность open source библиотек способствовала развитию сообщества разработчиков и исследователей, которые обмениваются опытом, знаниями и лучшими практиками в области машинного обучения. Это привело к быстрому прогрессу в создании новых моделей и приложений, основанных на машинном обучении.

Таким образом, обилие open source ML-библиотек является одной из ключевых причин бума GPU Cloud. Благодаря доступности и гибкости этих инструментов, разработчики и исследователи могут использовать мощь графических процессоров для решения самых сложных задач машинного обучения.

Внедрение ML и AI снижает Time-to-Market

Time-to-market (TTM) — это ключевой показатель, используемый для оценки эффективности и скорости вывода нового продукта, услуги или функциональности на рынок. Он измеряет временной интервал с момента фиксации идеи до запуска продукта на рынке или доступа к нему для конечных пользователей.

TTM включает в себя исследования гипотезы, Discovery-фазу, анализ и проектирование, а также Delivery-фазу, где разработчики берут задачу в работу, QA-инженеры проверяют качество, и результат разработки попадает в промышленную эксплуатацию.

Внедрение машинного обучения (ML) и искусственного интеллекта (AI) значительно сокращает время вывода продукта на рынок, что стимулирует развитие рынка облачных GPU. В условиях конкурентной борьбы предприятия стремятся привлечь и удержать клиентов, предлагая инновационные решения и улучшая качество обслуживания.

Использование GPU в сочетании с ML и AI позволяет компаниям быстрее разрабатывать и оптимизировать продукты, улучшать пользовательский опыт и повышать удовлетворенность клиентов. Это дает предприятиям преимущество перед конкурентами и способствует росту бизнеса.

Таким образом, внедрение ML и AI становится ключевым фактором успеха в современном бизнесе, стимулируя спрос на облачные GPU и ускоряя развитие рынка.

Заключение

Рост рынка GPU Cloud обусловлен растущим спросом на вычислительные мощности, технологическими прорывами и сложностями в закупке оборудования из-за санкций. Аналитика подтверждает, что компании все больше прибегают к облачным решениям для оптимизации расходов и улучшения гибкости.

Короткая ссылка