ВКС

от 250 руб/мес

Платформа корпоративных

коммуникаций

HRM

от 8500 руб.

HCM-платформа

для автоматизации HR

BI

По запросу

Visary BI

Облачная аналитика

IaaS

По запросу

По вашим правилам

Dedicated, SaaS/PaaS

IaaS

от 490руб./мес

VMware / ПО РФ

SLA 99,95% Pay-as-you-go

DBaaS

От 3,98 руб./час

№1 в рейтинге DBaaS

SLA 99,95%, 152-ФЗ, PCI DSS

Low-code

По запросу

Автоматизация процессов

с AMBER BPM

IaaS

По

Облако VMware/Брест

ФЗ-152, SLA 99,99%

IBP

По запросу

Интеллектуальная

платформа планирования

Корпоративные мессенджеры

От 200 руб/мес

Передовое

решение

  • HRM

    от 8500 руб.

    HCM-платформа

    для автоматизации HR

  • BI

    По запросу

    Visary BI

    Облачная аналитика

  • IaaS

    По запросу

    По вашим правилам

    Dedicated, SaaS/PaaS

  • IaaS

    от 490руб./мес

    VMware / ПО РФ

    SLA 99,95% Pay-as-you-go

  • DBaaS

    От 3,98 руб./час

    №1 в рейтинге DBaaS

    SLA 99,95%, 152-ФЗ, PCI DSS

  • Low-code

    По запросу

    Автоматизация процессов

    с AMBER BPM

  • IaaS

    По

    Облако VMware/Брест

    ФЗ-152, SLA 99,99%

  • IBP

    По запросу

    Интеллектуальная

    платформа планирования

  • Корпоративные мессенджеры

    От 200 руб/мес

    Передовое

    решение

IBP

По запросу

Высокая скорость

принятия решений

IBP

по запросу

Универсальная CPM/EPM

self-service платформа

Корпоративные мессенджеры

от 250 руб/мес

Защищенная платформа

коммуникаций

BPM

от 12 000 руб/год

Цифровые процессы

с комфортом для людей

Kubernetes

От 5,95 руб / час

№1 в рейтинге провайдеров

SLA 99,98%, 152-ФЗ

Kubernetes

По запрос

Платформа

контейнеризации

Low-code

от 667 руб.

Цифровая трансформация

с ELMA365

IP-телефония

от 0 руб.

Продуманная связь

для вашего бизнеса

IBP

По запросу

Цифровая система

SCP и IBP

IaaS

от 249,95 руб.

Для любых задач

Оплата pay-as-you-go

Игорь Гербылев, Just AI: Для ML, AI и речевых технологий серверы на базе GPU в три раза выгоднее обычных

Бизнес Цифровизация ИТ в банках ИТ в госсекторе Импортонезависимость Ритейл Маркет

Just AI работает в сфере машинного обучения и речевых технологий. Значительная часть вычислительных мощностей компании размещается в облаке Selectel, причем сотрудничество продолжается почти 6 лет — с октября 2017 г. На текущий момент особым спросом пользуются серверы на базе GPU. Подробностями поделились Игорь Гербылев, технический директор компании Just AI, и его коллеги.

Market.CNews: Добрый день, коллеги. Расскажите, пожалуйста, чем занимается компания Just AI, кто пользуется вашими сервисами, сколько у вас сотрудников?

Антон Сипачев, руководитель отдела разработки: С 2011 года Just AI работает в сфере разговорного искусственного интеллекта. Компания известна на рынке как ведущий разработчик диалоговых AI-решений: интеллектуальных голосовых и чат-ботов, виртуальных ассистентов, а также навыков для умных устройств.

Работаем как с сегментом enterprise, так и с представителями среднего и малого бизнеса. Также компания занимается развитием собственной технологии понимания естественного языка NLU (Natural Language Understanding).

И, конечно, мы не остаемся в стороне от происходящей техно-революции, за которой стоят мощные нейросетевые модели. Мы активно внедряем их в свои продукты и создаем инструменты, которые помогут бизнесу проще и эффективнее взаимодействовать с технологиями генеративного ИИ.

Сейчас у нас около 200 сотрудников, штат компании постоянно растет.

Потребности в облачных вычислениях и выбор провайдера

Market.CNews: Как устроен ИТ-отдел в вашей компании и какие ИТ-сервисы вам нужны для работы?

Антон Сипачев: Так как основное направление деятельности это разработка ИТ-решений, то основными потребителями ИТ-ресурсов в нашей компании являются отдел разработки, R&D и отдел эксплуатации.

Первые заняты непосредственно программированием сервисов и используют почту, мессенджеры, таск-трекеры, различные среды разработки, тестовые окружения и другие сервисы.

Помимо этого есть исследовательский отдел, которому нужны R&D-ресурсы: высокопроизводительные серверы на базе GPU для изучения и тестирования новых ML-моделей. Это как облачные и выделенные серверы, арендованные в Selectel, так и наши собственные, установленные on-prem.

Наконец, отдел DevOps-инженеров является промежуточным звеном между отделом разработки и другими ИТ-специалистами. В их руках находится продуктивная среда сервисов, которая также развернута в облаке Selectel.

Market.CNews: Когда у вас возникла потребность в миграции в облако и почему вы выбрали именно Selectel?

Игорь Гербылев: В 2016 году. К тому времени у нас возникла потребность в платформенных сервисах PaaS, и нужно было организовать надежную быструю и отказоустойчивую продуктивную площадку. Полагаясь на опыт коллег, выбрали Selectel как одного из наиболее серьезных провайдеров в этой области.

Помимо, собственно, рекомендаций, в Selectel нас привлекла возможность использования как выделенных, так и виртуальных серверов, а также создание геораспределенного кластера на базе ЦОД провайдера в Москве и Санкт-Петербурге.

В Selectel наc привлекла возможность использования как выделенных, так и виртуальных серверов, а также создание геораспределенного кластера на базе ЦОД провайдера в Москве и Санкт-Петербурге

Использование и окупаемость GPU-серверов

Market.CNews: Почему вам потребовались именно GPU-серверы? Какие альтернативные варианты вы рассматривали?

Игорь Гербылев: Мы разрабатываем платформу для построения голосовых сервисов, в ней используется несколько алгоритмов на базе машинного обучения. Многие из них гораздо лучше работают на GPU, чем на CPU. Порой разница настолько существенная, что обучение нейросети можно выполнить только на GPU.

Взять, к примеру, наш сервис Aimyvoice. Это набор из 21 голоса, с помощью которых наши клиенты могут озвучивать тексты. Для обучения новой версии базовой модели требуется более недели машинного времени сервера с большим количеством видеокарт. На серверах без видеокарт производить такие вычисления не имеет смысла с практической точки зрения, потому что такая операция потребует больше месяца времени и очень большое количество CPU.

Market.CNews: Но GPU-серверы заметно дороже CPU. Окупаются ли они?

Игорь Гербылев: На самом деле, если пересчитать на единицу производительности, то окажется, что GPU дешевле. Недавно мы проводили подобные расчеты. Для одной из задач нам нужно было сделать нагрузочное тестирование, и мы рассмотрели два равнозначных с точки зрения производительности варианта:

  1. Один сервер с видеокартой GTX 1080.
  2. 10 обычных серверов с 8 CPU в каждом из них.

Разница в цене в пользу GPU оказалась трехкратной. Кроме того, администрировать гораздо удобнее 1 сервер, чем связку из 10 штук.

Для одной из задач мы сравнивали 1 сервер с GPU и 10 серверов без GPU. Производительность для ML-моделей оказалась одинаковой, но сервер с GPU выигрывал по цене в 3 раза. Кроме того, администрировать гораздо удобнее 1 сервер, чем связку из 10 штук

Market.CNews: Ранее вы сказали, что используете собственные и арендованные серверы. Как распределяете нагрузку между ними? По каким критериям определяете, где запускать задачу на своем сервере или арендованном?

Игорь Гербылев: Это хороший вопрос. Свои серверы нам проще контролировать, с ними проще экспериментировать, но мы не можем обеспечить столь же отказоустойчивую их работу, как это делает провайдер. Поэтому мы разделили нагрузку в зависимости от этих требований:

  • Свои «машины» используем преимущественно для разработки и тестирования. В этих вопросах нужна высокая производительность и полный доступ к железу и драйверам, а высокая доступность не столь критична. Если случайно погаснет свет, то R&D-отдел, конечно, расстроится, но клиенты не пострадают.
  • В Selectel развернуты серверы продуктивной среды, на которых обрабатываются запросы клиента. Здесь критичным фактором является отказоустойчивость и отсутствие простоя в работе клиентов. В то же время доступ к драйверам не нужен, так как на этих серверах работает хорошо отлаженная версия нашего ПО.

На своих серверах мы проводим разработку и тестирование моделей. В Selectel развернуты серверы продуктивной среды — для клиентских сервисов крайне важна отказоустойчивость ИТ-инфраструктуры

Как подобрать GPU-сервер

Market.CNews: Как выбрать тип и количество GPU-карточек? Вы сразу арендуете несколько серверов или наращиваете мощности постепенно?

Игорь Гербылев: Выбор строится на основе следующих предпосылок:

  1. Модель GPU должна удовлетворять минимальным техническим требованиям. В первую очередь, это ограничение по размеру видеопамяти. Технические требования определяются на этапе разработки и тестирования приложения. Тем не менее во время пилотного запуска сначала мы делаем прогон на мощных серверах и пытаемся определить степень загрузки оборудования. После этого подбираем оптимальную конфигурацию сервера.
  2. Вычислительных ресурсов должно быть достаточно для рассматриваемой нагрузки. Нагрузка определяется количеством пользователей, количеством запросов в секунду и количеством каналов для синтеза/распознавания речи.
  3. Чтобы определить тип карты, проводим нагрузочное тестирование. Для этого симулируем нагрузку и смотрим на две характеристики пропускную способность (кол-во запросов/сек или кол-во одновременных каналов) и время отклика сервиса (время ответа чат-бота).

Если по итогам работ подошло несколько конфигураций, то выбираем наиболее подходящую по цене.

Market.CNews: Могут ли на одном GPU-сервере обрабатываться запросы разных клиентов?

Игорь Гербылев: Да, конечно. Контроль за распределением вычислительных ресурсов между разными клиентами обеспечивает наша платформа. Данные разных клиентов изолированы друг от друга, а все запросы выполняются независимо.

Зачем использовать несколько типов видеокарт и другие сервисы на базе GPU

Market.CNews: Как показывает наш рейтинг GPU Cloud 2023, у Selectel самый широкий набор сервисов на базе GPU и самый большой выбор видеокарт. Зачем нужны серверы с разной конфигурацией и разными картами GPU? Какие задачи они могут решать?

Игорь Гербылев: Оборудование всегда выбирается под определенную задачу. В наших продуктах используются различные ML-модели для разных задач. Например, для более простых моделей, работающих с текстом, мы используем карты попроще (GTX 1080), для синтеза голоса модели помощнее (A4000). Для одного из проектов мы сейчас проводим тестирование производительности системы на картах T4 и A2, эта работа пока что в процессе.

Для более простых моделей, работающих с текстом, мы используем карты попроще (GTX 1080), для синтеза голоса — модели помощнее (A4000)

Кроме того, нашим инженерам всегда интересно попробовать новое железо, протестировать его производительность и измерить скорость выполнения задач. Поэтому время от времени мы арендуем другие видеокарты, которые появляются у провайдера, и анализируем возможность их применения в нашем бизнесе.

Market.CNews: А что касается других облачных сервисов с использованием GPU?

Игорь Гербылев: Я бы отметил GPU в Kubernetes. На данный момент мы не используем Kubernetes, но это одно из приоритетных направлений развития.

Наша платформа решает множество задач извлечение сущностей, классификация, распознавание и синтез речи, расстановка знаков препинания и т.д. Под каждую из них есть несколько моделей от разных разработчиков, у каждой модели несколько версий. Таким образом, перед нами стоит проблема одновременного тестирования и управления множеством моделей.

Для решения этой задачи у нас создана собственная MLOps платформа, работающая поверх Kubernetes. Часть ML-сервисов, разумеется, требуют GPU, и мы активно используем GPU-серверы, включенные в кластер Kubernetes.

Market.CNews: Спасибо за интервью!

erid:Kra249HAKРекламодатель: ООО «Селектел»ИНН/ОГРН: 7842393933 / ОГРН 1089847357126Сайт: https://selectel.ru/

Короткая ссылка